
Adaptive User Modeling for Query Expansion

Jean-Yves Delort
1
,

1 Montpellier II University – LIRMM

34392 Montpellier, France
delort@lirmm.fr

Abstract. Web users are often overwhelmed by the number of result pages re-

trieved by search engines. Query expansion is a common search strategy to

narrow the search scope and to increase the relevance of the result lists. Exist-

ing query expansion systems proposed by search engines rely on techniques

like term co-occurrence or synonymy which do not take into account the user’s

search behavior. In this article we present an approach that recommends re-

finement terms with respect to the user’s needs and search strategies. The ap-

proach is unintrusive and only relies on implicit feedbacks extracted from the

navigation trails. This article also presents Conqueries, an implementation of

the proposed approach, describes the current version which has been used for

almost a year and outlines the future improvements.

1 Introduction

Different kinds of interactive systems may assist users seeking for information with a

search engine. The main goal of these systems is to improve the user queries which

are supposed to represent their information needs. Word re-weighting, search for

similar pages, spelling correction and query expansion are among current query re-

formulation techniques. Query-expansion consists in narrowing the scope of a search

by adding new terms to a user’s initial query.

Interactive query expansion tools are accessible from search engine interfaces1.

However, insofar as they are on the server-side, they have a limited access to the

user’s interaction trails. Accordingly, they often neglect the user’s behavior. For ex-

ample, they may rely on term co-occurrence in a corpus of documents, on a thesaurus

[1] or yet on a semantic net [2]. When they are tested on a wide-scale, recommenda-

tions provided by this approach (called global-analysis) are observed as being often

ignored by users [3]. A likely reason is that the user’s behavior is not taken into ac-

count. Indeed, Web user’s profiles, intentions and strategies may greatly differ.

Agents supporting searching on search engines using the user’s behavior have to

cope with two main difficulties: 1) with a mean query size of 2.6 words [4], the repre-

sentations of the user’s need is often imperfect and incomplete and, 2) users are often

1 See for example Yahoo!, Excite, or Kartoo.

reluctant to send their feedbacks, because of privacy concerns or because it is time-

consuming.

In this article we present Conqueries, an adaptive agent which assists users to ex-

pand their queries with recommended terms and modifiers. Conqueries unobtrusively

learn the user’s current interests from the navigation trails in order to suggest person-

alized lists of keywords: Two users making the same query but having different

search strategies will be proposed different terms. Conqueries does not depend on the

search engine interface. It has been included on several search engines as is in use for

almost a year to assist users2.

The paper is organized as follows. Section two puts forward the main features of

Conqueries. Section three explains how Conqueries deals with the user interactions

and describes the recommendation algorithm. Section four describes the search en-

gine templates. They are used by Conqueries to easily adapt to different search engine

interfaces. Finally, we survey other query expansion systems, discuss how they differ

from Conqueries and conclude with the future improvements.

2 System Overview

We have developed a system called Conqueries that helps users to expand their que-

ries during their searches on search engines. The system suggests personalized lists of

keywords depending on the user’s behavior. It is based on an unintrusive approach to

learn the user’s interests from their interaction trails.

Conqueries considers two kinds of user interactions:

1. An access to a result list, i.e. a page that contains links towards result pages

retrieved by a search engine.

2. An access to a result page.

Subsection one presents an example of Web search with a search engine where

the user is assisted by Conqueries to expand her queries3. Subsection two summarizes

the main goals of query expansion systems. Subsection three puts forward the hy-

potheses underlying our system and relates them to these goals. Subsection four de-

scribes how Conqueries cope with the user’s shifts of focus and how it takes into

account her disinterest for previously recommended terms. Finally, subsection five

presents the main features of the user interface of Conqueries.

2.1 Example

Conqueries assists a user who is trying to expand her previous query because the

results retrieved by the search engine did not satisfy her. The following scenario em-

phasizes the important steps in the search process and the time of Conqueries action.

2 http://www.conqueries.com
3 We will use the feminine pronoun (she, or) when referring to users of either gender.

Let us denote by “SE” a search engine and by “Anna” a user looking for information

about the major cities in Sweden4:

1. Anna formulates her initial query which is “Sweden cities” and she submits it
to SE.

2. The result list page reports that 5,180,000 documents are relevant for the SE.
Anna clicks on the first one in the list.

3. Anna looks at the content of the page which deals with tourism in Sweden.
Her need is not satisfied and she gets back to the result list.

4. At that time, Conqueries recommends her the following terms, “cityguide”,
“Stockholm”, “Malmö”, “sightseeing” and “tours”.

5. Anna chooses to insert “Stockholm” and “Malmö” (two of the major Swedish
cities) in her query and she submits it to SE.

6. The result list reports now that about 140.000 are relevant. Among the top-ten
results, Anna sees and clicks on a link to a document that looks really relevant

to her.

7. Indeed, the document contains the list of the major cities in Sweden as well as
their number of inhabitants. Anna’s information need is satisfied.

This example shows how a query expansion system, like Conqueries, can support

searching on a search engine. The next subsection reviews the different kinds of sup-

port query expansion systems should provide to the users.

2.2 Supporting Searching on a Search Engine

Vakkari suggests several criteria that an agent supporting searching should fulfill [5].

In this subsection we summarize them and bring out how they relate to query expan-

sion:

C-1 The user should be helped to expand and differentiate their conceptual model
of the topic. For instance, the system could help the user:

a. To find more appropriate or alternative vocabulary,
b. to narrow the scope of her search (e.g. appending an “ AND “ op-
erator before a term),

c. to cut down on the result list (e.g. appending an “ AND NOT “ op-
erator before a term).

C-2 The user should be helped to formulate the query with support for choosing
appropriate boolean modifiers. For instance, the system could help the user:

a. To choose appropriate boolean modifier “OR”, “AND”, “NEAR”...
C-3 Recommended terms should be presented to the user within a conceptual

structure resembling her mental model.

In the next section, we introduce the hypotheses underlying Conqueries and relate

them to these criteria.

4 This scenario was tested on Google.com, Feb. 9th 2005.

2.3 Our Hypotheses

Our first hypothesis stems from the following observation: Web experts often ex-

pand their queries with terms picked up in the content of previously accessed result

pages. Let us take an example to emphasize this idea. Let us suppose that a Web

expert needs information about health insurance in France and that her initial query is

“insurance in France”. Typically, existing search engines would retrieve millions of

relevant pages. However, after browsing a few result pages, her next queries can

contain refinement terms such as “health”, “medical” or “coverage”. We assume that

often, these terms are picked up in the content of the accessed result pages.

An important feature on the search behavior is that intermediary accessed pages

often make the user’s needs evolve. Indeed, as a consequence of her viewing of these

pages, features she has in mind of her current needs may be changed, removed or

added [6]. Thus again, we assume that the user is likely to pick up terms in the con-

tent of the previously accessed result pages.

Our approach is based on the two previous hypotheses. Thus, the proposed terms

are intended to support the user in the way described by criterion C-1 in section 2.2.

2.4 Adapting to the user’s current interests

The user confidence in the recommender system would probably decrease quickly if

the system suggested irrelevant keywords. It can happen between the times when the

user starts a new search and before she accesses a first result page. Then, the recom-

mender system keeps recommending terms related to her previous interest because it

is based on the last accessed result pages. We use a shift detection heuristic in order

to avoid such a situation. When a shift occurs, Conqueries resets all the information

about the user’s needs it has saved so far.

Sometimes a term has been recommended several times in a row but the user has

never used it. We consider that the user has no interest in it. Conqueries takes into

account the previous recommendations in order not to recommend again terms that

have been suggested more often than a given threshold.

2.5 Presenting Recommended Terms to the User

The interface of Conqueries is a toolbar in the browser window. Recommended terms

are displayed in menu-words. The purpose of a menu-word is to show the user the list

of modifiers that can be used together with the word in the query. When a user clicks

on an item in a menu-word, the content of the query field in the browser window is

updated. An update consists either in appending a boolean modifier followed by the

word to the query or in removing the chosen word from the query. Boolean modifiers

can be “AND”, “AND NOT”, “NEAR”, etc. They are search engine dependent. Fig-

ure 1 shows an example of a menu-word associated with the keyword “directories”.

Fig. 1. A query-word

The query field is modified thanks to dynamically inserted Javascript into the con-

tent of the page when the page loads. Then, if the user clicks on a menu-item, a

Javascript function is called.

The toolbar is made up with three areas [Fig. 2]:

1. “Settings”: This single menu opens up a window where the user can tune the
recommendation algorithm.

2. “History”: This single menu contains the list of the user’s previous queries.
By clicking on a query, the user submits it again.

3. “Recommended terms”: The fourth area displays the menu-words corre-
sponding to the recommended terms.

Note that the interface of Conqueries supports the user in the way described by cri-

terion C-2 in section 2.2.

 3 Recommending personalized keywords

In this section we explain how Conqueries deals with the user’s interactions and de-

scribe its recommendation algorithm.

3.1 Dealing with the user’s interactions

Conqueries is a Browser Helper Object (BHO) for Microsoft Internet Explorer. Ac-

cordingly, it receives the browser’s events triggered by the user’s interactions.

When the user wants to access a page, Conqueries recognizes that the URL corre-

sponds to a result list if it contains characteristic substrings like, the search engine

domain name, the CGI name, an attribute, etc.

Conqueries finds out that a URL corresponds to a result page if the two following

conditions hold:

1. the previously accessed page was a result list.
2. the URL is exactly contained in the enumeration of the previous result list. In-
deed, the result list can contain other links (e.g. banners) which do not point

towards result pages.

The second condition is checked as follow: First, two markers have two be looked

for in the HTML content of the result list. Markers are strings saying precisely where

the result enumeration starts and finishes. The URL is compared with all the URLs

contained between the markers. If one matches, the URL corresponds to a result page.

If the user accesses a result list, Conqueries carries out the following actions:

1. the user query q is extracted (directly from the URL in the case of a GET or in
the sent data in the case of a POST),

2. q is sent to the recommender system,

3. the new list of recommended terms is received from the recommender system,
4. the list is displayed in menu-words in Conqueries.

In the case of result page, Conqueries proceeds as follow:

1. it waits for the content of the result page to be completely displayed in the
browser window,

2. the content of the page is sent to the recommender system

Fig. 2. Conqueries toolbar

3.2 Recommendation Algorithm

User’s current interests are stored in three containers of elements represented as term

vector: DOCS, QUERIES and RECS. DOCS contains the N last accessed result

pages, QUERIES contains all the previous query and DOCS gathers the previous

recommendations. Let us denote by CURRENT_REC the current list of recom-

mended terms.

The recommendation algorithm is called when the user accesses a result list or a

result page. It is made up with two modules, M1 and M2. M1 builds a list of terms to

recommend. M2 removes peculiar terms in CURRENT_REC.

When Conqueries calls the recommender system with the content of the last ac-

cessed page as a parameter, the document is pushed on RECS (if RECS size is N,

then the oldest document is removed) and M1 and M2 are called successively.

When the user accesses a result list, Conqueries extracts the query (from the URL or

from the data sent) and sends it to the recommender system which pushes it on

QUERIES and calls M2.

Building the list of terms (M1). Before being added to DOCS, the HTML content of

a result page is filtered as follow:

1. Tags and Javascript are removed.
2. The language of the page is predicted by counting the numbers of French and
English most frequent terms and choosing the language with the highest num-

ber of frequent terms (currently only French and English documents are sup-

ported).

3. Given the language of the document, a stemmer is used to remove terms the
stems of which belong to a list of frequent stems to stop.

4. Remaining words are counted and are represent in the vector space model [7].
Using the first hypothesis described in section 2.3, the terms to be recommended

come from DOCS. Given a term t in a document of DOCS, the following formula is

computed:

 S(t)N(t) w(t) ×= (1)

where N(t) is the number of documents in DOCS that contain the term t and S(t) is the

sum of occurrences of the term t in all the elements of DOCS.

This formula models the second hypothesis presented in section 2.3. It takes into

account both the overall frequency of a term in the last accessed results and the num-

ber of them containing it.

We preferred (1) to the formula proposed in [6]:
DOCS

tS
tw

)(
)(= . Indeed, this

function does not take into account the word frequency in the content of the docu-

ments. Accordingly, too many terms have the same weights.

After that, CURRENT_REC is update with the top-K most relevant terms and

CURRENT_REC is also pushed on RECS.

Removing peculiar terms (M2). The module M2 is in charge of detecting the user’s

shifts of focus and of filtering CURRENT_REC. Conqueries heuristic to detect the

user’s shifts of focus is the following one: as long as two consecutive queries have at

least one word in common, the user is considered to be still searching for the same

information. Indeed, it is only seldom that user replace all the terms of the previous

query. Usually, at least one term representing the main idea remains in the query

throughout the search process. When a shift is detected, QUERIES, DOCS and RECS

are cleared as explained in section 2.4.

M2 pops CURRENT_REC and removes the terms that have been used in previous

queries (QUERIES) or that have been recommended (RECS) more frequently than a

given threshold F. The updated list of recommendations is pushed on RECS.

The recommendations worked out by our algorithm are presented to the user when

she is on a page where she can reformulate her query. The next section shows how to

make Conqueries supporting searching on different search engines.

4 Search Engine Templates

Conqueries can support searching on a great number of search engines provided that

it knows useful information about the search engine:

1. the markers used to check if a URL belong to the result enumeration in a re-
sult list (let us denote them by, startMarker and endMarker)

2. the substrings used to check if a URL is a result list (resultListCondition).
3. the boolean modifiers and wildcards understood by the search engine (modi-

fier in modifierList)

4. The form name (formName) and the name of the field where the query is en-
tered (formAttribute).

These pieces of information are specific to each search engine. They are stored in

a search engine template. Figure 3 shows an example of a template for Google.com.

<sengine>

<name>Google [COM]</name>

< resultListCondition >

http://www.google.com/search? NOT_q=cache NOT_q=related

</resultListCondition>

<queryAttributeName>q</queryAttributeName>

<startMarker>class=g></startMarker>

<endMarker>clear=all></endMarker>

<modifierList>

<modifier> </ modifier >

< modifier > -</ modifier >

</modifierList>

<formName>gs</ formName >

<formAttribute>q</ formAttribute >

</sengine>

Fig. 3. The Google.com template

Every time the user opens a browser instance, Conqueries connects to a server

where it downloads the latest templates. If a search engine interface is changed then

one only needs to update the template on the server-side so that every user of Con-

queries can get the latest template.

5 Related Work

There is a great deal of research on query expansion and agent supporting searching

on a search engine. This section summarizes several related approaches and describes

how they differ from our approach.

To our knowledge, [8] describes the closest system to Conqueries. It describes a

meta-search system that recommends query expansion terms from the content of

annotated relevant documents. Howevers the system differs from Conqueries in the

following reasons: First, the query expansion system is requires the user explicit feed-

back. Second, it requires a specific architecture. Third, the user’s shifts of focus and

the behavior with respect to previous recommendations are not taken into account.

Many other query reformulation systems are based on the user explicit feedback.

In [9] a system is described where the user marks an area of text relevant with respect

to her current needs. Then, the system uses the surrounding content (called the con-

text) to automatically generate queries. Terms are represented in a semantic space and

clustered. Queries are built using the most important terms of each cluster. In [10] a

collaborative-filtering technique is used to discover semantically similar queries with

a clustering algorithm. Similarity between two queries is computed using their repre-

sentations as bags of words. The representation of a query contains all the terms in-

cluded in the result pages annotated relevant by others who have made the same

query.

In [11], implicit feedback models are applied to query expansion. For these mod-

els, several representations of the same document are available (title, abstract, sum-

mary, etc.) and a specific information retrieval system must be used. The user’s inter-

est in a document depends on the path she follows between its different representa-

tions. Each model has its own method of working out the current interests according

to the followed paths. However, the model are not designed to cope with the user’s

shifts and the behavior with respect to previous recommendations is not taken into

account

[12] describes a link recommender system that automatically generates synthe-

sized queries from terms contained in the previously accessed documents. The system

is based on an algorithm that predicts whether a term is likely to occur in the last

accessed relevant document or not. The approach is based on the idea that the last

accessed document is the only relevant one. Unlike Conqueries, this approach does

not take into account the facts that user’s needs can evolve during the search process

and that they can require the access to several relevant pages to be satisfied.

Conclusion and Future Works

In this article we have presented Conqueries, an agent that helps users to refine their

queries with suggested query expansion terms. Unlike many other systems, Conque-

ries does not depend on the user explicit feedback. Conqueries unobtrusively learns

the user’s interests from her search behavior.

The proposed query expansion method looks for interesting terms in the content of

the previously accessed result pages. Basically, the more frequent a term occurs in the

content of these pages, the more likely it is supposed to be related to the user’s cur-

rent interests and is worth recommending. In order to provide more accurate recom-

mendations, Conqueries adapts to the user’s behavior: First, it detects the user’s in-

terests and second, it discards the previous recommendations that have not been used

(thus, the previous outputs are one of the input of the recommendation algorithm).

There are a couple of interesting issues that are addressed by Conqueries, for in-

stance, the heuristics 1) to detect the user’s shifts of focus and 2) to filter the recom-

mendations using the previous recommendations. The usability of the current inter-

face of Conqueries could also be compared with other kinds of query expansion tools.

The recommendation algorithm presented in this article relies on two hypotheses

that need to be evaluated: First, the content of the previously accessed result pages

contains useful refinement terms. Second, the more often a term occurs in a result

page, the more likely it is to be connected to the user’s current interests. In [13], this

latter hypothesis was successfully used to detect the user’s shifts of focus.

References

1. Voorhees, E.: Query expansion using lexical-semantic relations. Proceedings of the ACM

Conference on Research and Development in Information Retrieval (1994) 61—69

2. Stenmark, D.: Query expansion using an intranet-based semantic net. Proceedings of IRIS-

26 (2003)

3. Anick, Peter: Using terminological feedback for web search refinement - a log-based study.

Proceedings of the ACM Conference on Research and Development in Information Re-

trieval (2003) 88—95

4. Spink, A., Jansen, B. J., Wolfram, D., Saracevic, T.: From E-Sex to E-Commerce: Web

Search Changes. IEEE Computer, Vol. 35 (3). (2002) 107—109

5. Vakkari, P.: Cognition and changes of search terms and tactics during task performance.

Proceedings of the RIAO'2000 Conference (2000) 894—907

6. Bates, Marcia J.: The design of browsing and berrypicking techniques for the online search

interface. Online Review, Vol. 13(5). (1989) 407—431

7. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communi-

cations of the ACM, Vol. 18. (1975) 613—620

8. Smeaton, A. F., Crimmins, F.: Relevance feedback and query expansion for searching the

web: A model for searching a digital library. Proceedings of The European Conference on

Digital Librairies (1997)

9. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.:

Placing Search in Context: The Concept Revisited. Proceedings of the 10th International

WWW Conference (2001)

10. Hust, A., Klink, S., Junker, M., Dengel, A.: Query Expansion for Web Information Re-

trieval. Proceedings of the 32nd Annual Conference of the German Informatics Society,

Web Information Retrieval Workshop (2002)

11. White, R.W., Jose, J.M., van Rijsbergen, C.J., Ruthven, I.: A simulated study of implicit

feedback models, Proceedings of the International European Conference on Information

Retrieval (2004)

12. Zhu, T., Greiner, R., Haubl, G.: Learning a Model of a Web User's Interests. Proceedings

of the Ninth International Conference on User Modeling (2003)

13. Delort, J-Y: Seeking for Clues About Users' Information Needs in Their Navigation. Pro-

ceedings of IADIS International Conference WWW/Internet (2004)

